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Prediction Prediction and decision making problem

Available data

Quantity of interest for prediction
Indicator construction

Indicator evolution modelling

Prediction taking into account model, operational and environmental
conditions variability, parameters uncertainty



Prediction and decision making problem

@ Problem statement by expert

o Available data

o Quantity of interest for prediction
o Data science

o Indicator construction: machine learning, clustering, CPA, etc.
o Indicator evolution modelling: stochastic models, calibration
o Prediction: filtering, bayesian methods, etc.
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Indicator evolution modelling

@ Physic-based and data-based
o Data-based
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Modelling

What is going to be modelled?
@ The quantity of interest

@ An indicator related to the quantity of interest

How it is going to be modelled?
@ physical model

@ physical and statistical model:



Modelling

@ physical model : exact equation often deterministic
@ physical and statistical model

e random model (stochastic model)
o deterministic physical model as average trend
e uncertainty modelling through parameters, models or measurements



Formalisation

@ X; indicator at time t
X = (X¢)teT take values in space (E, E).
e E=UUU, where U is the acceptable zone

Probability of being in {, conditionnally to the past

@ Observations (Y;)ien
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One dimensional illustration

The Remaining Useful Life at time t:

RUL: =inf{s>t, Xs¢U}—t
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Figure: lllustration of the prognostic concept with different types of observation



Examples Q = IR or Q = IR?

Gylinder, radius of the base

Plane in which

tho second— .
equal log
Wiener prccess .

¥, evolves —

First hiting Time: H' Plane in which
~ the first
— Wiener process
X, evolves
A
0/
* Hilling point

The Bossel process: R = 02 + Y2




Aim: ~
P(X: e U|Fs,s < t)
At time s, give the distribution of X, t > s .
Requirements:
@ Have a model for X = (X¢)ier
@ Deal with parameters (known, unknown, uncertainty...)
@ Deal with data
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Random models

Stochastic processes good candidates to model (X;):eT.

Definition

A random or stochastic process is a time series of random variables or vectors.
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Q =RY, d-dimensional Lévy process

Xo=0, Xe—Xo L {X,:

Ganm Process Paths

u<shVs<t, Xeps — Xs ~ Xe — Xo

[6 ProcessPats

R

[pevesy




Q = R, Diffusion process

dXt = ‘LL(t, Xt)dt —+ O'(t7 Xt)th
(We)e>0 a standard Brownian Motion

Brownian Motion Bessel Process.

8(

Geometric Brownian Motion




Spatial-temporal process

2008

2006 2007
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Examples

Markov processes
@ Semi Markov processes
@ Jump processes
@ Self-exited processes
° ...
Different choices according to :
@ the dependence to the past,
@ the distribution,
@ event arrivals,
e O, T,
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Taking into account the physical model
900000000000 0000000O0O0000

SiC MOSFET threshold Voltage Instability

17/65



Taking into account the physical model
O@00000000000000000O00000

Threshold voltage measure

@ Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor:
SICMOSFET

@ SiC MOSFET threshold Voltage Instability: Accelerated Degradation Test
o Instability of the voltage threshold is an aging mechanism

@ Threshold voltage measure,

@ Variable usage profile

@ Time Dependent Dielectric Breakdown :

1/m g
BD %2y

TBD =k eksT
Re

Npgp is the critical density of trap in oxyde, R default creation rate,m
non-linearity coefficient of trap creation and k is a constant.
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Taking into account the physical model
0O0@0000000000000000O0O0000

Threshold voltage measure

@ Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor:
SICMOSFET

@ SiC MOSFET threshold Voltage Instability: Accelerated Degradation Test
o Instability of the voltage threshold is an aging mechanism

@ Threshold voltage measure,

@ Variable usage profile

@ Time Dependent Dielectric Breakdown :

Lm g,
Tep = kﬂekBT + W,
Re

Npgp is the critical density of trap in oxyde, R default creation rate,m
non-linearity coefficient of trap creation and k is a constant.
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Taking into account the physical model
000@000000000000000O00000

Threshold voltage measure

@ Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor:
SICMOSFET

@ SiC MOSFET threshold Voltage Instability: Accelerated Degradation Test
o Instability of the voltage threshold is an aging mechanism

@ Threshold voltage measure,

@ Variable usage profile

@ Time Dependent Dielectric Breakdown :

1/m g
AT
Tep = k—LEP e
R¢

Npgp is the critical density of trap in oxyde, R default creation rate,m
non-linearity coefficient of trap creation and k is a constant.



Taking into account the physical model
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Threshold voltage measure
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Taking into account the physical model
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Threshold voltage measure
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Taking into account the physical model
0O00000@00000000000000000

Threshold voltage measure

An extended gamma process is used where the average trend in non linear
and the variance is increasing with time
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Taking into account the physical model
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Threshold voltage measure
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Figure: Crossing time of a given threshold is studied




Taking into account the physical model
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Threshold voltage measure: Gamma process with covariates
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Figure: The influence of usage parameters on the remaining time before crossing the
threshold



Taking into account the physical model
000000000 e00000000000000

Crack propagation
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Taking into account the physical model
000000000000 00000000000

Crack propagation

@ For M components, a crack size X ;, observed at inspection times
te{tik, .., tok}, k€{1,...,M}.

@ The fatigue damage variable D is a function of time or the number of
cycles t, the parameters C and m which are depending on the property of
material, K is the stress intensity factor and the stress intensity range AK:

dD m
o = C(aK)

where AK is dependent on D through the equation AK(D) = B8vVD and
[ is a constant in stable environment.



Taking into account the physical model
00000000000 e000000000000

Crack propagation

dD .
& = C(AK)™ + W, (1)
dt

or

dD ”
dD ”
% = C(aK)

Stochastic process: Gamma process

D: — Ds ~ T(aft — s), )

where uncertainty is also propagated through parameters

M M ng
1
m(a, B) o B\/ aVi(a) -1 Bla,d~ZIG Olztnk,k,z Sk + Z Zk i
k=1 k=1 i=r+1

where Wy(.) is the trigamma function.



Taking into account the physical model
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Crack propagation: bayesian estimation for a gamma process with censored
data

T
2 a [} o

asened ke

Figure: Histogram of truly observed crack sizes. All observations are above the
detection threshold z = 18mm (Left).Observed trajectories of crack size over 26 similar
components. The dashed blue lines correspond to censored parts of the trajectories,
and the numbers of missing data per observed trajectory are written in blue. (Right)



Taking into account the physical model
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Crack propagation: parameter uncertainty

Figure: Marginal posterior distributions of («, 3) and joint posterior sampling, given a
non-informative prior.
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Taking into account the physical model
0000000000000 0e000000000

Crack propagation: parameter uncertainty propagation

precicted crack size (mm)

o 5 10 15 20 25 30 35

mnning ime (y)

Boxplots of the posterior distributions (given an non-informative prior on

(e, B)) of each predicted crack size and real observations (in red). The boxes
represent the interquartile intervals (25-75%-ordered percentiles) around the
median, and the lines indicate the intervals 1-99%. 5000 posterior samples
produced by the Gibbs algorithm are used to compute these box plots.
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Taking into account the physical model
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Crack propagation: prediction uncertainty propagation
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Figure: Posterior predictive density functions of the visiting time T, given
non-informative and informative priors (Left). Posterior predictive density functions of
the failure time Tqo given non-informative and informative priors (Right).



Taking into account the physical model
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Taking into account the physical model
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Taking into account the physical model
0000000000000 0000e000000

Ageing of steel impacted by external factors
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Taking into account the physical model
0000000000000 00000Oe00000

Steel ageing

@ Ageing of steel due to an external factor ¢.
@ Measurement change of ductile-brittle transition temperature ATT .
@ Physical model

E(ATT4) = Fi(ccu, cp, cni)p™

where Fi(ccu, cp, cni) = A(1 4 a1(cp — 0.04)" 4 as(ccy — 1.2)" + ascijcau)
and A a1,a,a3 € R




Taking into account the physical model
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Steel ageing

Modelling with a non-homogeneous gamma process

Delta temp. trans.

Processus Gamma avec indicatrice(s)

Valeurs mesuress Fl fort
Valeurs mesuress F1 faible




Taking into account the physical model
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Cavitation
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Taking into account the physical model
000000000000 000000000e00

Cavitation

Hydraulic Francis turbine runners: erosive cavitation
Xy — Xe_y = (ti — tic1)G

where X, and ¢; are the mass and cavitation intensity at time t; respectively (2
order differential equation 2).

STAGE
Material loss

Material loss
MAXIMUM RATE STAGE

2

INCUBATION + ACCELERATION

¥

Exposure time Exposure time

1

Figure: (Left) Characteristic stages of the cumulative erosion-time curve, (Right)
Cavitation erosion paths (m = 3) from laboratory.




Taking into account the physical model
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Cavitation

Modelling with a non-homogeneous gamma process
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Figure: Hitting time distributions of T,, Path prediction.




Taking into account the physical model
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Data-based models
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ed model
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Wind speed modelling
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Data-based model
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Wind speed
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Data-based model
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wind: clustering
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Data-based model
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Wind speed statistical modelling

Aerodynamic models: considering turbulence etc.,
@ Navier-Stokes equations
@ Sensitivity analysis difficult to implement

@ uncertainty propagation time consuming.
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Data-based model
0O000@000000000000O000O00000

Wind speed statistical modelling

The Ornstein-Uhlenbeck process is a stochastic process that satisfies the
following stochastic differential equation:

dX; = a(c — X¢)dt + bdW,, t € [0, T], Y(0)=0. (2)

where (W;)¢>0 is a standard Brownian motion. The parameters a > is the rate
of mean reversion, ¢ > 0 is the long-term mean of the process and b > 0 is the
volatility or average magnitude, per square-root time, of the random
fluctuations that are modelled as Brownian motions.
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Data-based model
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Diffusion embedded Markov chain

SDE modols

Markov chain state

Markov chain for
SDE selection

ok —n— 0
-5 -4 -3 -2 -1 0 1 2 3 4 5
wind speed fluctuation (mis)




Data-based model
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wind: clustering

————  PDF of simulated wind speed

06 PDF of real wind speed

o
2
T

Probability

°
T

8
Wind speed (ms)




Data-based model
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Wind turbine health indicator modelling
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Data-based model
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Figure: Four indicator increments



Data-based model
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Figure: Volatility evolution in time



Data-based model
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Stochastic model

Jump diffusion process
dXt = Xt (Mddt -+ O'dde +4 EJdNt)

up €R, op € R", &, is a r.v, (W;)>o is a standard brownian motion and
(N¢)e>o is a Poisson process.

@ Dynamic environment

dX,
xt = padt + VVedW + (e’ — 1)dN,
t

dVe = kv (0y — Vi)dt + oy v/ VedW?

where (Wt(l))tzo and (Wt(z))tzo are two independent standard brownian
motions, J is a real random variable, ov € R, 6y € R and kv € R'.
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Data-based model
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Clustering
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Figure: Increments of indicator in three different classes .




Regime switching model




Data-based model
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[10-90]% Bondes d'évolution e findice Nb. 6 par simulation Monte Carlo Simulation des modéles 3RS-JDU, 6RS-JDU et SVJD
T L e e L e S e B B AL

Figure: Intervalles de confiance de [10, 90]% one indicator with 3RS-JDU, 6RS-JDU et
SV-JD.
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Data-based model
0000000000000 0e0000000000

@ Noise: with or without noise
@ Type: high frequency, periodic or non-periodic measurement intervals,
outliers, extreme values

o Size: small, large



Data-based model
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Formalisation with observations without noise

@ Direct measurements at time (tx)ken,

@ X, indicator at tx _
]P(th+h E Z/{|Xt1, ceey th)

Such that X;, €U , i € {1, , k}

Challange:

The calculation of the conditional distribution

‘C(thJrh‘th? ey th)




Data-based model
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Formalisation with noisy observations

@ The system is inspected at times tx, k € N,
@ Y, observation at t,
@ X system state at
o Y = gi(Xy,€i), € r.v. considered as noise, i € N*
o Aim: find ~
P(Xern € U Yer, .oy Ye,)
for h >0 )
Challange:

The calculation of the conditional distribution

l:(th+h‘ Ytl’ ceey Ytk)
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Data-based model
0000000000000 0000e0000000

Simplest case: €2 = IR and memoryless process

P(Xepan > L| Yo, oo ytk):/ﬁxw(L—x), Hyg v () dx

Survival function conditionnally to observations

Filtration methods: MCMC, Particle filter

Qo+Q

Fo(h) == > Fx ,(L—57)
q=Qo+1

4

Qo : the number of sequences to get the convergence state. @ : the number of
sequences to give sufficient precision to the empirical distribution of interest.



Data-based model
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Turbofan Engine Degradation
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Data-based model
0000000000000 000000e00000

@ Turbofan Engine Degradation Simulation Data

e Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
dynamical model.

@ Run-to-failure trajectories for a small fleet of aircraft engines under
realistic flight conditions.



Data-based model
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PHM data challenge
@ 218 components
@ 24 sensors
@ 3 operational conditions
@ time series
Two sets

@ learning set: data until failure

@ test set : data before failure
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Data-based model
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Health indicator

Steps
@ Sensor selection
@ Operational mode distinction
o CPA
@ health indicator proposition
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Figure: 6 modes and ACP per mode




Data-based model
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Health indicator construction

Projections of failure on the 2-D space of PCs in mode k (F})
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Data-based model
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Health indicator construction

Stochastic processes
@ Non monotonic degradation: Wiener process with drift

@ Monotonic degradation with noise: non homogeneous gamma process with
additive noise
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Data-based model
0000000000000 0000O0000000e

NEXT STEP

Let's talk and work together



	Taking into account the physical model
	Data-based model

