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Taking into account the physical model Data-based model

Prediction Prediction and decision making problem

Available data

Quantity of interest for prediction

Indicator construction

Indicator evolution modelling

Prediction taking into account model, operational and environmental
conditions variability, parameters uncertainty
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Taking into account the physical model Data-based model

Prediction and decision making problem

Problem statement by expert
Available data
Quantity of interest for prediction

Data science
Indicator construction: machine learning, clustering, CPA, etc.
Indicator evolution modelling: stochastic models, calibration
Prediction: filtering, bayesian methods, etc.
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Indicator evolution modelling

Physic-based and data-based

Data-based
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Modelling

What is going to be modelled?

The quantity of interest

An indicator related to the quantity of interest

How it is going to be modelled?

physical model

physical and statistical model:
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Modelling

physical model : exact equation often deterministic

physical and statistical model
random model (stochastic model)
deterministic physical model as average trend
uncertainty modelling through parameters, models or measurements
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Taking into account the physical model Data-based model

Formalisation

Xt indicator at time t

X = (Xt)t∈T take values in space (E , E).

E = U ∪ Ū , where U is the acceptable zone

Probability of being in Ū , conditionnally to the past

Observations (Yi )i∈N
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Taking into account the physical model Data-based model

One dimensional illustration

The Remaining Useful Life at time t:

RULt = inf{s ≥ t, Xs /∈ U} − t

Figure: Illustration of the prognostic concept with different types of observation
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Taking into account the physical model Data-based model

Examples Ω = IR or Ω = IR2
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Taking into account the physical model Data-based model

Aim:
P(Xt ∈ Ū|Fs , s < t)

At time s, give the distribution of Xt , t > s .

Requirements:

Have a model for X = (Xt)t∈T

Deal with parameters (known, unknown, uncertainty...)

Deal with data
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Taking into account the physical model Data-based model

Random models

Stochastic processes good candidates to model (Xt)t∈T .

Definition

A random or stochastic process is a time series of random variables or vectors.
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Taking into account the physical model Data-based model

Ω = Rd , d-dimensional Lévy process

X0 = 0, Xt − Xs ⊥⊥ {Xu : u ≤ s}, ∀s < t, Xt+s − Xs ∼ Xt − X0
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Taking into account the physical model Data-based model

Ω = R, Diffusion process

dXt = µ(t,Xt)dt + σ(t,Xt)dWt

(Wt)t≥0 a standard Brownian Motion
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Spatial-temporal process
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Spatial-temporal process
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Examples

Markov processes

Semi Markov processes

Jump processes

Self-exited processes

...

Different choices according to :

the dependence to the past,

the distribution,

event arrivals,

Ω, T ,

....
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Taking into account the physical model Data-based model

SiC MOSFET threshold Voltage Instability
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Threshold voltage measure

Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor:
SICMOSFET

SiC MOSFET threshold Voltage Instability: Accelerated Degradation Test

Instability of the voltage threshold is an aging mechanism

Threshold voltage measure,

Variable usage profile

Time Dependent Dielectric Breakdown :

TBD = k
N

1/m
BD

RG
e

EA
kBT

NBD is the critical density of trap in oxyde, RG default creation rate,m
non-linearity coefficient of trap creation and k is a constant.
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Threshold voltage measure

Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor:
SICMOSFET

SiC MOSFET threshold Voltage Instability: Accelerated Degradation Test

Instability of the voltage threshold is an aging mechanism

Threshold voltage measure,

Variable usage profile

Time Dependent Dielectric Breakdown :

TBD = k
N

1/m
BD

RG
e

EA
kBT + Wt

NBD is the critical density of trap in oxyde, RG default creation rate,m
non-linearity coefficient of trap creation and k is a constant.
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Taking into account the physical model Data-based model

Threshold voltage measure

Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor:
SICMOSFET

SiC MOSFET threshold Voltage Instability: Accelerated Degradation Test

Instability of the voltage threshold is an aging mechanism

Threshold voltage measure,

Variable usage profile

Time Dependent Dielectric Breakdown :

TBD = k
N

1/m
BD

RG
e

EA
kB

T

NBD is the critical density of trap in oxyde, RG default creation rate,m
non-linearity coefficient of trap creation and k is a constant.
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Threshold voltage measure
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Threshold voltage measure
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Taking into account the physical model Data-based model

Threshold voltage measure

An extended gamma process is used where the average trend in non linear
and the variance is increasing with time
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Threshold voltage measure

Figure: Crossing time of a given threshold is studied
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Taking into account the physical model Data-based model

Threshold voltage measure: Gamma process with covariates

Figure: The influence of usage parameters on the remaining time before crossing the
threshold
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Taking into account the physical model Data-based model

Crack propagation
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Taking into account the physical model Data-based model

Crack propagation

For M components, a crack size Xk,t , observed at inspection times
t ∈ {t1,k , . . . , tnk ,k}, k ∈ {1, . . . ,M}.
The fatigue damage variable D is a function of time or the number of
cycles t, the parameters C and m which are depending on the property of
material, K is the stress intensity factor and the stress intensity range ∆K :

dD

dt
= C(∆K)m

where ∆K is dependent on D through the equation ∆K(D) = β
√
D and

β is a constant in stable environment.
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Taking into account the physical model Data-based model

Crack propagation

dD

dt
= C(∆K)m + Wt (1)

or

dD

dt
= C(∆K)m

dD

dt
= C(∆K)m

Stochastic process: Gamma process

Dt − Ds ∼ Γ(α(t − s), β)

where uncertainty is also propagated through parameters

π(α, β) ∝ 1

β

√
αΨ1(α)− 1 β|α, d ∼ IG

α M∑
k=1

tnk ,k ,
M∑
k=1

Sk +

nk∑
i=rk+1

zk,i

 .

where Ψ1(.) is the trigamma function.
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Taking into account the physical model Data-based model

Crack propagation: bayesian estimation for a gamma process with censored
data

Figure: Histogram of truly observed crack sizes. All observations are above the
detection threshold z = 18mm (Left).Observed trajectories of crack size over 26 similar
components. The dashed blue lines correspond to censored parts of the trajectories,
and the numbers of missing data per observed trajectory are written in blue. (Right)

29/65



Taking into account the physical model Data-based model

Crack propagation: parameter uncertainty

Figure: Marginal posterior distributions of (α, β) and joint posterior sampling, given a
non-informative prior.
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Taking into account the physical model Data-based model

Crack propagation: parameter uncertainty propagation

Boxplots of the posterior distributions (given an non-informative prior on
(α, β)) of each predicted crack size and real observations (in red). The boxes
represent the interquartile intervals (25-75%-ordered percentiles) around the
median, and the lines indicate the intervals 1-99%. 5000 posterior samples
produced by the Gibbs algorithm are used to compute these box plots.
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Taking into account the physical model Data-based model

Crack propagation: prediction uncertainty propagation

Figure: Posterior predictive density functions of the visiting time T40 given
non-informative and informative priors (Left). Posterior predictive density functions of
the failure time T90 given non-informative and informative priors (Right).
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Taking into account the physical model Data-based model

Taking into account the physical model
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Taking into account the physical model Data-based model

Ageing of steel impacted by external factors
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Taking into account the physical model Data-based model

Steel ageing

Ageing of steel due to an external factor φ.

Measurement change of ductile-brittle transition temperature ∆TTφ.

Physical model
E(∆TTφ) = F1(cCu, cP , cNi )φ

α

where F1(cCu, cP , cNi ) = A(1 + a1(cp − 0.04)+ + a2(cCu − 1.2)+ + a3c
2
NicCu)

and A, a1, a2, a3 ∈ IR
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Steel ageing

Modelling with a non-homogeneous gamma process
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Cavitation
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Taking into account the physical model Data-based model

Cavitation

Hydraulic Francis turbine runners: erosive cavitation

Xti − Xti−1 = (ti − ti−1)ci

where Xti and ci are the mass and cavitation intensity at time ti respectively (2
order differential equation 2).

Figure: (Left) Characteristic stages of the cumulative erosion-time curve, (Right)
Cavitation erosion paths (m = 3) from laboratory.
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Cavitation

Modelling with a non-homogeneous gamma process

Figure: Hitting time distributions of Tρ, Path prediction.
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Data-based models
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Taking into account the physical model Data-based model

Wind speed modelling
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Taking into account the physical model Data-based model

wind
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Taking into account the physical model Data-based model

wind: clustering
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Taking into account the physical model Data-based model

Wind speed statistical modelling

Aerodynamic models: considering turbulence etc.,

Navier-Stokes equations

Sensitivity analysis difficult to implement

uncertainty propagation time consuming.
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Taking into account the physical model Data-based model

Wind speed statistical modelling

The Ornstein-Uhlenbeck process is a stochastic process that satisfies the
following stochastic differential equation:

dXt = a(c − Xt)dt + bdWt , t ∈ [0,T ], Y (0) = 0. (2)

where (Wt)t≥0 is a standard Brownian motion. The parameters a > is the rate
of mean reversion, c > 0 is the long-term mean of the process and b > 0 is the
volatility or average magnitude, per square-root time, of the random
fluctuations that are modelled as Brownian motions.
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Taking into account the physical model Data-based model

Diffusion embedded Markov chain

S1

S2S3

S4

----   SDE models

----  Markov chain state

----  Markov chain for
   SDE selection
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Taking into account the physical model Data-based model

wind: clustering
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Taking into account the physical model Data-based model

Wind turbine health indicator modelling
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Taking into account the physical model Data-based model
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Figure: Four indicator increments
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Taking into account the physical model Data-based model

Stochastic model

Jump diffusion process

dXt = Xt (µddt + σddWt + ξJdNt)

µD ∈ IR, σD ∈ IR+, ξJ is a r.v, (Wt)t≥0 is a standard brownian motion and
(Nt)t≥0 is a Poisson process.

Dynamic environment

dXt

Xt
= µddt +

√
VtdW

(1)
t + (eJ − 1)dNt

dVt = κV (θV − Vt)dt + σV

√
VtdW

(2)
t

where (W
(1)
t )t≥0 and (W

(2)
t )t≥0 are two independent standard brownian

motions, J is a real random variable, σV ∈ IR+, θV ∈ IR and κV ∈ IR+.
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Taking into account the physical model Data-based model

Clustering
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Figure: Increments of indicator in three different classes .
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Taking into account the physical model Data-based model

Regime switching model
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Taking into account the physical model Data-based model

Data

Noise: with or without noise

Type: high frequency, periodic or non-periodic measurement intervals,
outliers, extreme values

Size: small, large

55/65



Taking into account the physical model Data-based model

Formalisation with observations without noise

Direct measurements at time (tk)k∈N,

Xtk indicator at tk
P(Xtk+h ∈ Ū|Xt1 , ...,Xtk )

Such that Xti ∈ U , i ∈ {1, · · · , k}

Challange:

The calculation of the conditional distribution

L(Xtk+h|Xt1 , ...,Xtk )
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Taking into account the physical model Data-based model

Formalisation with noisy observations

The system is inspected at times tk , k ∈ N,

Ytk observation at tk ,

Xtk system state at tk

Yi = gi (Xti , εi ), εi r.v. considered as noise, i ∈ N∗

Aim: find
P(Xtk+h ∈ Ū|Yt1 , ...,Ytk )

for h > 0

Challange:

The calculation of the conditional distribution

L(Xtk+h|Yt1 , ...,Ytk )
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Taking into account the physical model Data-based model

Simplest case: Ω = IR and memoryless process

P(Xtk+h > L|Yt1 , ...,Ytk ) =

∫
F̄Xtk+h (L− x)︸ ︷︷ ︸

Survival function

. µYt1
,...,Ytk

(tk)︸ ︷︷ ︸
conditionnally to observations

dx

Filtration methods: MCMC, Particle filter

F̂tk (h) =
1

Q

Q0+Q∑
q=Q0+1

F̄Xtk+h (L− x̂
(q)
k )

Q0 : the number of sequences to get the convergence state. Q : the number of
sequences to give sufficient precision to the empirical distribution of interest.

58/65



Taking into account the physical model Data-based model

Turbofan Engine Degradation
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Taking into account the physical model Data-based model

Data

Turbofan Engine Degradation Simulation Data

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
dynamical model.

Run-to-failure trajectories for a small fleet of aircraft engines under
realistic flight conditions.
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Taking into account the physical model Data-based model

Data

PHM data challenge

218 components

24 sensors

3 operational conditions

time series

Two sets

learning set: data until failure

test set : data before failure
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Health indicator
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Taking into account the physical model Data-based model

Health indicator construction
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Taking into account the physical model Data-based model

Health indicator construction

Stochastic processes

Non monotonic degradation: Wiener process with drift

Monotonic degradation with noise: non homogeneous gamma process with
additive noise
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Taking into account the physical model Data-based model

NEXT STEP

Let’s talk and work together
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